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I. INTRODUCTION

Users may benefit from explicit sensory feedback when
learning a new motor skill. This feedback, like auditory or
visual direction from a coach, requires users to deliberately
adjust their movements based on instructions. When learning
a dance move or acquiring a medical skill, providing users
with explicit feedback that is error-based, for instance, visual
information about their distance from a target, can help them
to find or track desired movements. Modeling how users
control their movements may be beneficial when developing
feedback strategies for improving motor learning.

Researchers have suggested that Linear Quadratic Gaus-
sian (LQG) control may resemble how the central nervous
system receives sensory information to estimate the body’s
current movement state and optimally controls the next
movement action [1]. Using approaches similar to LQG,
researchers have developed sensorimotor models like those
explaining adaptive movement behavior [2] or redirected
reaching [3]. However, while models like these consider
implicit visual and proprioceptive feedback, they ignore the
effects of explicit sensory feedback on movement learning.
This work aims to predict how people learn movement
tasks when given different sensory modalities of explicit
error-based information. Here, we outline a sensorimotor
model that showcases our initial effort to explain different
movement behaviors when explicit error-based feedback is
delivered through vision versus vibration.

To evaluate our model, we consider a 1 Degree of Freedom
(DoF) handle sliding task where the goal position is initially
unknown. We ask participants to learn the goal position with
either error-based vision or vibration feedback using a phys-
ical system. We then simulate the results with our model by
accounting for the differing uncertainties in the two sensory
modalities. Our results are a step towards predicting how
different explicit sensory feedback might affect a person’s
motor adaptation performance and learning.

II. MODELING SENSORY ASSISTANCE

We developed a sensorimotor model (Fig. 1) based on our
1 DoF sliding task. We evaluate whether changing the level
of uncertainty associated with our observation of explicit po-
sitional error—provided through visual or vibration feedback—
results in changes in movement trajectories. To match our
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Fig. 1.

pilot study task, our model starts with an initial guess of the
goal, which is updated throughout the simulation.

Dynamics: We model the hand-handle system as a linear
mass-damper (m = 1 kg, b = 10 Ns/m) driven by the user’s
force, u(t), imparted on the system (Equation 1).

p(t) = v(t) mo(t) = u(t) — bu(t) (1)

For our problem, we consider the system state vector
x(t) = [p(t) v(t) e(t)]” in the horizontal direction. The
error between the current position and the goal position,
e(t) £ pgoar — p(t), captures the explicit error information
given to the user through either visual or vibration feedback
during the sliding task. The error signal changes as follows:
é(t) = —v(t). Motor noise (Gaussian noise: =0, 0 = 0.1
mm) is added to account for motor variability.

Observations: We assume that users observe each variable
in the state vector through noisy proprioceptive, tactile, or
visual sensory signals. Given our pilot study setup, proprio-
ceptive noise is added to the observations of position and
velocity, while either visual or vibration noise (Gaussian
noise: =0, Ovisuar = 0.5 mm Or Cyipration = 5 Mm),
is added to the observation of positional error. We assume
that vibration noise has a larger variance than visual noise.
This noise accounts for the resulting differences in the visual
versus vibration conditions simulated.

Goal Estimate Updates: As people gain information about
the environment, they update their beliefs about the goal
position (initially unknown). During the trial, when the error
changes signs, we update pgoai = Pobs +€obs Where pops and
eobs are the position and error observations, respectively. We
based this heuristic on instructions from the pilot study.

State Estimates: People use their noisy sensory obser-
vations and internal environment model to estimate their
state during movements. This process is captured through
a Kalman filter in our model.

Optimal Movement Control: Using the estimates of posi-
tion and velocity at each time step, we use a linear quadratic
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Fig. 2. Participant and model trajectories in vision and vibration feedback
conditions. Colors mark trials; the goal is dashed gray, and the average
underdamped fit is white. Average A, ¢, and w,, are reported. Plots with a
gray overlay show simulated trajectories with alternative goal positions.

regulator (LQR) to determine the next motor command,
corresponding to the force applied by the user onto the
handle. Here we chose the state cost () and control cost R
values based upon qualitative observation of the pilot data.
Between Trial Updates: To model learning between trials,
we initialize the goal estimate of each trial as the last goal
estimate of the previous trial plus some uncertainty (Gaussian
noise: i = 0, Onitiar = 5 cm). This uncertainty is decreased
between trials to explain memory and learning effects.

III. PiLoT STUDY DESIGN

We ran a within-subjects pilot study with 4 participants
(IRB#34826) to validate our model with two explicit error-
based sensory conditions: visual and vibrotactile. In each
trial, participants moved a 1 DoF haptic device [4], trying
to reach the goal in 2 seconds and receiving either visual
feedback via Processing (https://processing.org/) or vibration
feedback directly through the device’s handle. The explicit
sensory feedback provided participants with information
about their error relative to the goal, where the minimum
perceived vibration intensity (vibration condition) or line
length on the screen (vision condition) corresponded to the
goal. The goal location was different in each condition,
but the same across those trials. Participants completed
50 trials per condition. Before the conditions, participants
were trained to ensure they understood the task and timing.
Participants completed the study in less than an hour.

IV. PRELIMINARY RESULTS

Four right-handed participants (2 @, 2 &, age 1 = 23) were
recruited and compensated for completing the pilot study.

We fit each resulting trial trajectory to an underdamped
step response model. The output parameters, A (amplitude),
¢ (damping ratio), and w,, (natural frequency), were analyzed
with linear mixed-effects models (ImerTest) in R, with condi-
tion as a fixed effect and random intercepts for participants.
For the pilot study data, a multivariate test with the three-
parameter vector was significant (Pillai = 0.92, F(3, 396) =
1615, p < 0.001). Additional univariate models with Holm-
adjusted p-values (all p < 0.001) indicated: A decreased by
0.08 (due to the goal position decrease), ( decreased 0.25,

and w,, increased by 5.4e—4 rad/s. Note that P4 demonstrates
the largest of these changes (Fig. 2).

Thus, moving from vision to vibration information for
error resulted in less damped movements that unfolded more
quickly, indicating a transition to a faster but less stable
control regime. Our pilot results are consistent with previous
observations between vibration and visual feedback [5]. We
ran a similar analysis on the model-based data without any
random intercepts for participants. We found similar results
between conditions with our model (Pillai = 0.97, F(3, 96)
= 1008, p < 0.001). Furthermore, the univariate results
indicated a 0.06 decrease in A (p < 0.001), 0.1 decrease in
¢ (p=0.0014), and a 4.7e—4 decrease in w, (p < 0.001).

V. DISCUSSION & FUTURE WORK

The simulation versus participant results show different
trends for the natural frequency w, of the fit trajectories
from vision to vibration, but the same trend for the damping
ratio ¢ (the amplitude A depended on the differing goals).
Simulations under alternative goal positions predict resulting
trajectories with vision to vibration trends different from the
original simulation. The results suggest that differences in
sensory noise between the vision and vibration conditions, as
modeled, account for some of the difference in the resulting
trajectories; however, goal position likely contributes. This
model serves as a first step toward developing ways to under-
stand the effects of explicit sensory feedback on movement.

Future work should consider limitations to the model and
study design. Revisions of the model should expand to multi-
dimensional movements. Additionally, cost functions should
be fit to each participant to better predict how different
feedback will impact individual movement policies. Future
iterations of the study will include more participants and
will vary the goal positions across participants to determine
whether the observed differences in movement trajectories
come from the choice of goal position alone.

Haptic feedback design is often a manual process, requir-
ing expert creation, hand tuning, iteration, and selection of
a haptic signal from a large design space. The long-term
goal of this work is to simulate the effects of different types
of feedback on motor adaptation tasks—providing a valuable
tool for haptic designers to choose optimal feedback.
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