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(a) Human behavior: Circling a vertex point.

Abstract

Using vibration feedback on a touchscreen is a promising method
to provide blind and low-vision (BLV) users access to graphical
content. While prior studies have explored the design space of vi-
brotactile rendering of graphics, findings do not generalize to com-
plex shapes, and comprehensive standards for vibrotactile graphics
comparable to those for tactile graphics are yet to be defined. To
address this gap, we present a computational model for non-visual
vibrotactile touchscreen exploration using a partially observable
Markov decision process (POMDP) framework. Preliminary sim-
ulations of a triangle-tracing task demonstrate that empirically
observed exploration strategies, such as circling or crossing around
a point, emerge as adaptive behaviors under this framework. The
model can further incorporate factors such as memory limitations
and observation uncertainty, providing a new approach for an-
alyzing exploration behaviors influenced by environmental and
user-specific variables. This framework introduces a tool to un-
derstand non-visual exploration strategies and inform vibrotactile
graphics design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA °25, Yokohama, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1395-8/25/04

https://doi.org/10.1145/3706599.3719851

(b) Learned POMDP behavior: Circling a vertex point.
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1 Introduction

Blind and Low-Vision (BLV) users often rely on tactile and touch-
screen graphics to consume images and diagrams. Unlike conven-
tional tactile graphics that use physical deformations like raised
lines and dots, touchscreen-based graphics are refreshable and use
vibrations to convey information on a flat surface. Whereas tactile
graphics benefit from well-established design principles codified by
organizations like Braille Authority of North America [2], vibrotac-
tile graphics on touchscreens do not have comparable guidelines
[10, 11, 17]. Insights from tactile perception studies do not seam-
lessly transfer to touchscreen-based vibrotactile graphics due to
fundamental differences, such as the inability to perceive direc-
tion and common reliance on a single point of haptic feedback
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[4, 36]. Furthermore, there is limited understanding of which types
of graphics are best suited for this medium and how they should
be effectively presented.

Modeling can be instrumental in offering rigorous, systematic,
and generalizable insights into the complexities of non-visual in-
teraction [3]. In Human-Computer Interaction (HCI), modeling
has demonstrated its value in simulating user behavior, assessing
interface effectiveness, and refining design concepts. Some work
extends these methods to users with impairments. For instance,
Touch-WLM examines speed-accuracy trade-offs in text entry for
individuals with dyslexia, tremor, or memory dysfunction [31]. Li
et al. [21] model how blind users select menu items using auditory
feedback alone.

Our work is inspired by the theoretical framework of computa-
tional rationality [25], which posits that human behavior emerges
as the result of optimizing expected utility under internal con-
straints (e.g., cognitive and physical limitations) and external con-
straints (e.g., the physical environment). We propose a computa-
tional model of non-visual vibrotactile touchscreen exploration,
framing graphic exploration as a partially observable Markov de-
cision process (POMDP) [15]. In this framework, an agent (which
simulates a non-visual user) performs sequential actions to trace
an underlying shape while relying on haptic feedback (vibrotactile
sensations) rather than visual information. The agent maintains
probabilistic beliefs about the shape’s location, updates these beliefs
based on observations, and selects actions to maximize cumulative
rewards.

Our preliminary simulations of a triangle tracing task demon-
strates that empirically observed exploration strategies, such as
crossing or circling around a point [11, 29], emerge naturally as a
result of the rationality assumption, even with a simplified frame-
work. This indicates that such strategies may arise as adaptive
behaviors to constraints like the absence of vision. Furthermore,
the POMDP framework is highly flexible, allowing for the incor-
poration of additional cognitive factors, such as working memory
limitations, observation uncertainty, and prior knowledge through
customizing the belief updater, observation model, and prior distri-
bution, respectively. This adaptability allows for the simulation of
diverse user experiences, including personal differences in cognitive
and sensory abilities.

As a next step, collecting empirical data will be crucial for vali-
dating and refining the model’s assumptions and parameters. Ulti-
mately, our approach can help researchers and practitioners in HCI
deepen their understanding of non-visual interaction, guide the
design of accessible interfaces, and evaluate vibrotactile displays
for diverse user populations.

2 Related Work

2.1 Vibrotactile Touchscreen Interaction for
BLV Users

Vibrotactile rendering is an effective method for providing non-
visual feedback to BLV users on touchscreen interfaces [10, 11, 36].
Modern touchscreen devices are inherently multipurpose, multi-
sensory, and equipped with accessibility features such as screen
readers and gesture interactions, making them a viable platform
for BLV-friendly interfaces [4]. Vibrotactile feedback, which uses
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Figure 2: An overview of a non-visual user interacting with a
vibrotactile touchscreen. We propose that as the user receives
partial (non-visual) information at each time step, her belief
of the composition of the underlying shape is updated.

the built-in vibration motor to provide haptic output, can deliver
tactile cues without requiring additional hardware [5] and offer
more privacy compared to audio feedback [36].

Early systems demonstrated the feasibility of vibrotactile ren-
dering for conveying graphical information, allowing BLV users
to interpret road networks [28], graphs [7], shapes [5], and maps
[13] through vibration and auditory cues. Vibrotactile touchscreens
have been particularly effective for rendering simple graphics [8],
enabling users to navigate lines and shapes with higher accuracy
and preference compared to audio-only feedback [36].

Unlike embossed maps or pin-array systems, which allow users
to directly perceive attributes like a line’s orientation, thickness,
or elevation through touch, a touchscreen’s smooth surface offers
no tactile information about these attributes [36]. Furthermore,
vibration based touchscreens only support single finger interaction
as commercial hardware has only one on-board vibration motor [4].
Therefore, determining a line’s orientation requires active finger
movement [11, 17].

Due to these differences, graphic materials on touchscreen-based
interfaces should be schematized and rendered differently from
traditional tactile graphics [27]. However, compared to extensive
design guidelines for tactile graphics [2], few comparable resources
exist to assist designers in effectively applying vibration to shapes
and paths [11]. Addressing these challenges is essential for advanc-
ing vibrotactile interface design and improving usability.

Vibrotactile exploration strategies have been identified for simple
graphics, such as circling at junctions and making a cross-like
motion to avoid straying as shown in fig. 3 [11, 29]. Strategies for
raised-line graphics have been shown to vary by graphic type, task
focus, and individual user preferences [1]. However, no equivalent
insight exists for vibrotactile graphics, highlighting a gap in our
understanding of the interface. Our work aims to extend upon these
heuristics through a modeling approach with potential to predict
and understand strategies for more complex patterns. By building a
modeling framework that predicts and explains how these strategies
may emerge as rational responses to environmental constraints,
our goal is to understand existing heuristics and predict behavior
for more complex scenarios.
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2.2 Haptic Search Strategies

Haptic search strategies have been empirically studied in non-visual
contexts, focusing on tasks such as line tracing, distance compar-
ison, and local and global searches among distractions [26, 39].
Research shows that search performance improves significantly
with the use of multiple hands and fingers, particularly for individu-
als who are blind [23]. Blind individuals often demonstrate superior
haptic performance compared to sighted participants, likely due
to their ability to effectively leverage multi-hand and multi-finger
strategies honed through experience [6]. These strategies include
systematic approaches, such as parallel sweeps and spirals, as well
as random methods like ballistic or Brownian motion, which are
modulated by factors such as task complexity and detection radius
[22]. These empirical studies provide valuable insights into simple
search tasks but fall short of addressing advanced scenarios involv-
ing diverse shapes and user-specific constraints. Our computational
model simulates adaptive exploration strategies, offering both a
computational explanation for these behaviors and a foundation
for addressing further cognitive or physical constraints.

(a) Circling a vertex point (b) Crossing a vertex point
Figure 3: Common strategies for non-visual exploration of
vibrotactile graphics on a touchscreen. Adapted from Gor-
lewicz et al. [11]. These strategies are thought to be used to
determine a line’s orientation.

3 Modeling Non-visual Vibrotactile Exploration
as Bounded Optimal Control

The partially observable Markov decision process (POMDP) pro-
vides a flexible and powerful framework for modeling sequential
decision-making under uncertainty [15, 18]. This approach is par-
ticularly well-suited for capturing how users make decisions when
interacting with interfaces that offer limited feedback (i.e., partial
observability). Like a user interacting with a new shape, the agent
in the POMDP model cannot directly observe the true state of the
world. Instead, it builds a belief —a probabilistic representation of
the world—based on partial observations and interactions with
small parts of the environment [18].

The following approach was inspired by the words of Leder-
man and Klatzky [20], “Hand movements can serve as “windows,”
through which it is possible to learn about the underlying repre-
sentation ...” We model non-visual vibrotactile touchscreen ex-
ploration as a haptic tracing problem in a grid world, where the
user sequentially interacts with the touchscreen to uncover and
understand the location and shape of the underlying structure. The

CHI EA ’25, April 26-May 01, 2025, Yokohama, Japan

— planner
»
— wo T
action a down |
environment left
right —

o
Aj belief b

— belief updater

update
belief

observation o

state vector

Figure 4: The proposed computational model. An online plan-
ner simulates how non-visual users perform the task of fol-
lowing the underlying shape.

shape is a collection of grid cells that would provide vibrational
feedback when the position of the agent (non-visual user) coincides
with the shape. While these shapes are limited to the resolution of
the grid, this is an appropriate simplification given that so far, only
basic shapes (lines, triangles, and polygons) have been effectively
identified using vibrational feedback [5]. Furthermore, basic shapes
form the basis from which more complicated graphics are created
[36].
We formally describe the problem as follows:

Given an n-by-n grid that contains a shape made up of
K cells, denoted by Sghape = {(x1,y1), - .-, (xk, yK) },
visit every cell in the shape in the fewest number
of steps as possible using movement actions in the
cardinal directions.

State Space. At each time step ¢, the environment is in a state s €
S, which encodes the agent’s current position on the grid (x, y), the
cell positions comprising the shape Sshape = (x1, Y1), - - -, (xK, YK),
and the agent’s history H of visited positions with their correspond-
ing observations. As users often do not know shape and location a
priori, the shape configuration is hidden from the agent. We assume
that the agent’s location and history is deterministically known to
the agent, which is an assumption that can be relaxed to reflect a
more realistic user, as discussed in section 6.1.

Observation Space and Observation Model. As the agent cannot
directly observe where the shape is located, the agent relies on
observations limited to a single cell corresponding to whether their
finger is vibrating to estimate the location of the shape. The ob-
servation space O is defined as: O = {vibration, no vibration}. The
observation model O(s’, a,0) = P(o | a,s”) is computed based on
the agent’s current position and the Sghape configuration. Obser-
vations are deterministic, signifying that the user is certain of a
vibration. Prior research indicates that vibrations are effective at
indicating whether a user is "on" or "off" a graphical element [37].
This deterministic assumption can also be relaxed to instead convey
uncertainty in the vibration as discussed in section 6.1.

Action Space. The action space A consists of hand movements
in the four cardinal directions: A = {up, down, left, right}. After
taking an action, the environment enters a new state according to
the state-transition model.
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State-Transition Model. The state-transition model, T (s, a,s’) =
P(s’ | s,a), is deterministic. Given a cardinal movement action,
the new position (x”,y’) is computed, and history H is updated
accordingly. The shape position does not change over time, repre-
senting a static graphic on the touchscreen. If all cells composing
the underlying shape have been visited, (Sshape C H), the process
transitions to a terminal state.

Reward Function. The reward function encodes the agents’ pref-
erences and goals. The reward function R(s, a, s”) assigns a single
large positive reward for visiting all cells that make up the under-
lying shape (set to 1000 in our experiments). In POMDP planning
and reinforcement learning (RL), it is well understood that poorly
defined reward functions can lead to unintended behaviors, such
as “reward gaming” [34]. To address this, we define the reward to
directly reflect the true objective—revealing the full shape—rather
than a proxy goal, such as revealing parts of the shape. This ensures
that the agent’s behavior remains aligned with the actual objective
of the task.

Discount Factor. A discount factor y = 0.9 is used to prefer imme-
diate rewards over future ones, reflecting the tendency of human
decision-making to prioritize short-term outcomes, especially in
uncertain or sensory-constrained environments.

3.1 Belief Update

In a POMDP, the belief of the agent can be represented as a proba-
bility distribution over the underlying (hidden) state. Observations
and actions taken by the agent can be used to update this belief.
That is, the user updates where they think the underlying state is
based on their observations. For instance, when they encounter
a cell with no vibration, they rule out the possibility that the un-
derlying shape involves that cell. We used a particle filter for state
estimation (the shape configuration), which can represent a broad
range of distributions [38].

While state estimators such as the Kalman Filter [16] are widely
used, Kalman filtering requires the assumption that the belief is
Gaussian. Instead, particle filtering[9] represents the belief as a
collection of state particles that are a plausible approximation of
the underlying state. Since the observations are discrete, we use
a particle filter with rejection. To update the belief, each particle
s; from the current belief is transitioned to a new state s] using
the transition model and the selected cardinal action a from the
planner (see section 3.2). Observations are then sampled from the
observation model using each new state and the selected action,
0; ~ P(- | a,s]). Each of these observations are compared to the true
observation o received from the environment, and the states whose
associated observations that do not match the true observation are
rejected from the filter.

In our model, the agent has a uniform prior belief over the possi-
ble shape configurations. Initial beliefs can be customized to reflect
the agent’s prior knowledge about the underlying graphic.

3.2 Approximately Optimal Control

To solve the POMDP and get a policy a = 7 (b) that maps beliefs to
actions, we used the POMCP algorithm (partially observable Monte
Carlo planning), an online planning algorithm based on Monte
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Carlo tree search [33]. This choice was motivated by the need to
handle large state spaces efficiently and the algorithm’s suitability
for cognitive modeling. Prior research suggests that memory-based
and goal-directed simulations play a role in human cognitive pro-
cesses, particularly in predicting future experiences and guiding
actions [32].

4 Experiment

To simulate an agent exploring various shapes, we specify the grid
size, the agent’s starting position, the ground truth shape configu-
ration, and the agent’s initial belief. Triangles were chosen as the
ground truth shape for our simulated display, building on findings
from recent empirical studies that successfully rendered basic poly-
gons for participants with visual impairments [11] and blindfolded
participants [35]. We simulated an agent with prior knowledge of
the shape type (right triangle) and size (outline composed of 12
cells ), exploring a 10 by 10 grid world through observations. The
grid size was chosen to be small for computational efficiency while
being large enough to render the shape. A particle filter with 10000
particles was sufficient to prevent particle depletion. The agent’s
initial belief was represented as a uniform probability distribution
across all possible 12-point triangles that could be drawn on the
grid. The agent’s initial position was defaulted to (5, 5).

5 Preliminary Findings

Empirical studies by Raja [29], later confirmed by Gorlewicz et al.
[11], indicate that during non-visual exploration of geometric pat-
terns, users employ an exploration strategy known as circling and
crossing, as illustrated in fig. 3. Results from the experiment show
that circling and cross strategies are frequently observed as a means
to optimally trace the shape (fig. 5). In our model, these patterns
naturally emerge as a consequence of optimizing for a single re-
ward criterion—successfully tracing the shape, which provides a
reward of +1000—showing that these strategies effectively help
reduce uncertainty and narrow beliefs.

Gorlewicz et al. [11] and Tennison and Gorlewicz [35] observed
that participants spent the majority of their exploration time at
key points of interest, such as vertices. We qualitatively verify such
exploratory behavior in fig. 6, through a heatmap over the agent’s
visit frequency on the grid. The initial agent position was set to
(1, 10) to demonstrate the planner’s ability to navigate to points of
interest.

6 Discussion and Future Work
6.1 Model Enhancement

Conducting an empirical study to compare simulation results with
real-world behavior is an essential next step. There are several op-
portunities for enhancing the model’s ability to generalize findings
to real-world touchscreen interactions. While the current model
assumes small, discrete state/action spaces and deterministic tran-
sition/observation models, these can be readily adjusted to capture
the complexities of human behavior and cognition. To better reflect
touchscreen interactions, we plan to expand the action space for
greater movement flexibility and/or increase grid resolution in the
state space. At higher grid resolutions, the four-direction movement
may be a sufficient approximation to capture curved trajectories.
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Figure 5: Circling and cross-like strategies are frequently
employed to optimally trace the shape. Blue areas indicate
the agent’s belief about the shape’s location, with darker re-
gions representing greater certainty. The agent’s movement
effectively reduces uncertainty in the shape’s location
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Figure 6: A normalized heatmap of the agent’s visit count
over the grid world. The agent successfully navigates toward
the shape, and higher visit counts are assigned to the vertices
of the triangle. This bears similarity with finger position data
experimentally collected by Gorlewicz et al. [11].

Higher-resolution grids could enable more complex graphics be-
yond abstract shapes such as bar charts [40] and street maps [4].
Additionally, we will incorporate sensory fatigue [17, 36] and multi-
hand exploration in the observation model. Finally, we propose
introducing stochastic transitions to account for the variability in
proprioceptive tracking and motor control [17]. To further account
for cognitive load, we will integrate memory constraints using
custom belief updaters or existing approaches from the literature
[14].
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6.2 Applications of the Model

This model provides a versatile tool for understanding how users
adapt their exploration strategies under various environmental
constraints (e.g., grid density, shape complexity) and cognitive limi-
tations (e.g., memory constraints, proprioceptive uncertainty). By
simulating these adaptations, the model can help predict the impact
of design decisions, such as optimal feedback frequency or layout
structure, on user performance and experience. Models like ours
can complement human-subject experiments by exploring broader
design scenarios quickly.

Modeling in HCI is a powerful approach for explaining variations
in user behavior based on individual attributes and preferences [24].
For example, prior studies have observed unexpected strategies in
vibrotactile exploration, such as broad scanning versus short scan-
ning patterns [35]. These behaviors could be analyzed as potential
adaptations to factors like memory limits, motor constraints, or
environmental conditions. Understanding these strategies could
inform the development of personalized user interfaces that adapt
to individual needs, enhancing usability and accessibility.

6.3 Limitations

The strategies identified in this work are specific to the goal of
haptic tracing; however, different contexts may require entirely
different strategies. For instance, tasks such as discriminating be-
tween shapes, comparing sizes, or identifying key features might
not necessitate visiting every part of a shape, leading to alternative
exploration behaviors. Nonetheless, with minor modifications to
our reward function (which dictates the goal of the agent), such
tasks can still be effectively modeled as a POMDP, allowing us
to use off-the-shelf solvers to solve them within the same formal
sequential decision-making framework.

Additionally, exploring all parts of a graphic does not necessarily
equate to understanding it. Advances in cognitive science, such as
causal inference [12] and Probabilistic Program Induction [19, 30],
provide promising frameworks for understanding processes such
as abstraction of concepts in the graphic.

7 Conclusion

In an era where touchscreen devices are ubiquitous, understanding
vibrotactile interaction is essential for advancing accessibility and
usability [10]. We have proposed a flexible computational model of
non-visual vibrotactile touchscreen exploration using a partially
observable Markov decision process (POMDP) framework. The pro-
posed framework provides a flexible and generalizable approach for
investigating how various environmental factors, such as graphic
shape and grid size, and user specific factors, such as memory, and
proprioceptive acuity, influence exploration behavior and strategies.
Preliminary results reveal that characteristic strategies, such as cir-
cling or crossing, naturally emerge from rational decision-making
under uncertainty. Without empirical data, we do not claim that our
model perfectly represents human cognitive processes. Rather, we
argue that even a simplified rational model can capture important
aspects of how blind and low-vision (BLV) users might explore
non-visual interfaces.

Beyond reproducing well-documented user behaviors, this mod-
eling approach offers a way to systematically probe the impact of
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internal and environmental constraints of the interface. Ultimately,
our approach offers a structured way to understand exploration
strategies under various constraints and guide vibrotactile interface
design.

Code Availability. The code can be found in the github repository
https://github.com/saechuihwang/GraphExploration
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