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(a) Our curved line display and its degrees of freedom. (b) Four examples of curves it can create. (c) A simulation of a multi-segment
display creating the shape of the top of a Talbot-Lago (photo by Jack Snell, CC BY 2.0. Background removed and image overlaid).

Abstract— Shape-changing displays enable real-time visual-
ization and haptic exploration of 3D surfaces. However, many
shape-changing displays are composed of individually actuated
rigid bodies, which makes them both mechanically complex and
unable to form smooth surfaces. In this work, we build a multi-
stable curved line display inspired by physical splines. By using
circular splines to initialize a discrete elastic rods simulator,
we can model multiple stable shapes that fit specific boundary
conditions. We then generate actuation instructions based on
the circular spline initialization to drive the physical display.
We demonstrate our display’s ability to create 16 shapes with
8 different boundary conditions. Our display is consistent in
shape output, with an average standard deviation in height of
0.75 mm or 0.47% of the display’s maximum vertical range.
We also show that our model is consistent with our display,
with a mean RMSE of 6.68 mm or 3.85% of the display’s
maximum vertical range for shapes we could stably simulate.
We then demonstrate potential scalability by simulating a multi-
segment version of the system and show the display’s ability to
withstand loads during contour following in haptic exploration.

I. INTRODUCTION

While much of modern design is done with computational
tools, physical models remain an important part of the
prototyping process. Physical prototyping is essential, from
automotive design [1] to architecture [2], allowing multiple
users to simultaneously view and interact with a tangible
design. Previous work has shown that physical models give a
richer impression of a prototype’s aesthetic and function than
would be available through a digital image alone, mitigating
design fixation [3]. However such models are often static and
must be entirely re-fabricated to reflect iteration.

One way to empower designers and engineers with phys-
ical feedback is through the development of shape-changing
displays, which are a class of robotic systems that dynam-
ically generate multiple physical forms. Pin displays are
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a well-studied type of shape-changing display. They are
composed of an array of linear actuators that move up and
down in concert to discretely approximate 1.5D [4] and
2.5D surfaces [5]–[7]. This type of device has been used
as a computational design tool [8]. Another type of shape-
changing display are displays that approximate shapes using
an articulated series [9] or grid of rigid bodies connected by
actuated hinges [10]–[12], otherwise known as a formable
crust display. Both aforementioned types of shape-changing
displays have similar limitations. First, they are mechanically
complex and, therefore, difficult to scale. Second, they can
only discretely approximate smooth surfaces due to being
composed of discrete, rigid bodies.

In this work, we propose a curved line display inspired by
physical splines [13] as a step toward minimally-actuated,
continuous surface displays. We designed and built the
system pictured in Fig. a that manipulates a flexible rod
by controlling rod length, boundary positions, and boundary
angles. Flexible rods are multi-stable when deformed by their
end points [14], complicating simulation and control, but also
enabling a larger shape space. To determine the actuation
strategy for our under-actuated, multi-stable system, we
employed a discrete elastic rods model [15], [16]. To model
multi-stability, we developed a novel optimization scheme
over circular splines to initialize the simulator. We then
used the actuation strategy determined from our model to
demonstrate the physical display’s ability to reliably generate
a variety of shapes (Fig. b). These shapes were validated
against the simulation. We then simulated a multi-segment
version of the curved line display (Fig. c) as a preliminary
demonstration of scalability. Finally, we tested the system
loading response to determine fitness for haptic exploration.

II. RELATED WORK

Attempts have been made at augmenting pin displays and
formable crust displays to better display continuous surfaces.
Some have augmented the pin display with a spatial low pass
filter, in which a material is stretched over the pin display
surface [5], [17]. While this approach partially smooths out
the pins, the material does not perfectly interpolate a smooth
surface, leaving the final shape with bumpy artifacts [18].
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Fig. 1. (a) Direct control of points along continuous display. (b) End point
control of continuous display. (c) Proposed single-segment, bi-stable curved
line display.

Layer jamming is a way to augment the formable crust
display to display smoother surfaces, replacing previously
rigid grids with flexible materials [19], [20]. This approach
is also smoother than the pin display, but requires selectively
locking segments along the surface itself, constraining dis-
play resolution to the grid size. Some works combine aspects
of these approaches by using rigid actuators to bend, stretch,
and twist flexible material by directly actuating points (Fig.
1a) [21]–[23] on a flexible material, or actuating a shape
memory alloy embedded in a flexible material [24].

Compliant rods present a promising alternative to purely
rigid or soft materials by allowing two fixed actuators at
either end to control a large state space (Fig. 1b). Prior works
in computer graphics have used this paradigm as an input
method [25], a fabrication tool [26], and a haptic display
[27]. These inherently smooth (continuous) devices come
with their own challenges. While they do produce smooth
lines or surfaces, all of these devices use a fixed length or
area of deformable material for their displays (Fig. 1a & b).
This means that while these devices can produce continuous
surfaces, they are limited in curvature by the area or elasticity
of the flexible material employed. Our insight is that it
may be possible to overcome this limitation by injecting or
removing material from a display (Fig. 1c).

In addition to the shape space limitations, the accuracy of
shape generation in smooth, shape-changing displays is more
challenging than in their discretely actuated counterparts. In
the cases where devices directly actuate points on a flexible
material [21]–[23], the devices have positional control over
the end effectors of their actuators, but do not measure or
control the shapes of the intervening flexible material. A
validated computational model for the bending of material

between actuators would not provide real-time positional
information, but it would provide additional geometric in-
formation without requiring additional sensors or cameras.
To this end, we propose a forward solution to model the
rod’s nonlinear deformation in between adjacent actuators
and show agreement with our constructed device.

One of the challenges in modeling flexible rods is their
multi-stability under certain boundary conditions [14], [28].
Our system utilizes sets of boundary conditions that produce
up to two stable states. To find these, we optimize over spline
control points, then discretize and relax these splines into
physically stable curves. The system multi-stability means
that to control the output shape, we must understand how
to reach a specific stable state. This both motivates our
investigation of different deployment strategies and expands
the accessible shape space of our device.

III. DESIGN OF A MULTI-STABLE CURVED LINE
DISPLAY

A. Mechanical Design

A single segment of this display is comprised of a flexible
rod actuated between two individually operated nodes (Fig.
2a). As shown in Fig. 2a, the controllable dimensions of the
system are the length of the flexible rod between the nodes
(L), the height between the nodes (y), and the angle of the
tangent vectors (t1 and t2) at each end of the curved line
(θ1 and θ2, respectively). The discrete elastic rods model
uses a perfectly elastic rod with a constant cross-section.
However, for ease of actuation, we chose a flexible rack
(KHK DR1-2000, Duracon) as the flexible rod for this curved
line display, which is not perfectly elastic.

Each node has three actuated mechanisms. The extrude
mechanism is a locally prismatic joint through which the
flexible rod moves. It controls how much of the rod is
on either side of the node (Fig. 2b, orange). The value
of L between the two nodes is controlled by the extrude
mechanisms on either side of the segment working in concert.
The biasing mechanism is a revolute joint that controls the
angle (θi) at which the rod passes through the node (Fig.
2b, magenta), corresponding to the node’s tangent vector, ti.
Rigid bearing surfaces above and below the rod constrain a
20 mm section of the rod to the desired angle at the center of
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Fig. 2. (a) Curved line display between two nodes showing the controllable dimensions of the system: the length of flexible rod between the nodes (L),
the height between the nodes (y), and the angle of the tangent vectors (t1 and t2) at each end of the curved line (θ1 and θ2, respectively). The two nodes
are a fixed 500 mm apart horizontally. CAD model of node module of the curved line display showing (b) extrude mechanism labeled with orange, bias
mechanism labeled with magenta, and (c) translate mechanism labeled with yellow.
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Fig. 3. Diagram of electronic components in main and nodes and the
communication between main and nodes.

rotation for the bias mechanism. The translation mechanism
is a prismatic joint that controls where the node is along a 20
mm x 20 mm aluminum extrusion (Fig. 2c, yellow), which
corresponds to y. There is an aluminum extrusion on either
side of the curved line segment for each node to travel on, as
pictured in Fig. 2c, and these aluminum extrusions are fixed
at 500 mm apart horizontally.

B. Electronics and Communication

Each node is an individually operated robot, with multiple
nodes working simultaneously to actuate the curved line
display. We used an N20 geared DC motor with an attached
magnetic encoder (Adafruit 4641) driven via a motor driver
chip (Texas Instruments DRV8833RTYT) to actuate each
degree of freedom (extrude, bias, translate). A Teensy LC
microcontroller manages the logic computation and commu-
nication (Fig. 3). A main computer was used to wirelessly
communicate pre-determined shape generation instructions
with each node using a 2.4 GHz radio chip (nRF24L01+
chip on SparkFun WRL-00691 breakout board). Motors, en-
coders, and the wireless communication module are attached
to the microcontroller using embedded electronics on a
custom PCB (Bay Area Circuits). Each node is continuously
polled for state information. When all nodes are finished
with their current instruction, the main computer sends out
the next step from the generated instructions.

IV. FORWARD SOLUTION USING DISCRETE ELASTIC
RODS

While some analytical solutions exist for elastic rods [30],
[31], they exist only under specific boundary conditions,

requiring a numerical model to describe the bending of
flexible rods in most practical applications. One popular
approach is to approximate a flexible rod or strip as being
a series of discrete pieces. This approach has been used to
describe the positioning of continuous robotic parts [32], [33]
and estimate the shape of a deformed rod manipulated by its
ends [26], [34]–[36]. Such models have not yet been adopted
in the design of shape-changing displays.

We rely on the discrete elastic rods method [15], [16], a
model that discretizes Kirchhoff rods and computes bending,
twisting, and stretching energy on the discrete segments. This
model and has been physically validated [37] and can accom-
modate different rod material properties and cross-sections.
We use the manufacturer-given young’s modulus and density
along with a rectangular cross-section to approximate the
notched rod in our device. Because the energy landscape of
elastic rods is non-convex, we witness multi-stability, where
different stable states lie at local minima. We first discuss
the mathematical boundary conditions of our system, then
generate different initializations to try to push the solver to
converge to different stable states.

A. Mathematical Boundary Conditions

One module of our system consists of an elastic strip
coupled to a vertical frame at two points. The boundary
conditions for one module of our system consist of the left
and right nodes’ relative vertical position (y) and tangent
vectors (t1 and t2), and the flexible strip’s arc length between
nodes (L). Given these conditions alone, we cannot uniquely
determine the output shape of the strip, due to system multi-
stability. We can however choose the output shape by using
different initializations to our solver that satisfy the boundary
conditions but converge to different final shapes (Sec. IV-B).

Our strip can be approximated by a 1D curve that is an
embedding in the frame plane of a real-valued function c(t) :
[0, 1] → R2. The endpoints of this curve are given as two
planar points, p1 and p2, and we set our frame origin to p1.
The vertical component of p2 is a degree of freedom, y:

c(0) = p1 = {0, 0}, c(1) = p2 = {x2, y} ∈ R2 (1)

There is a variable tangent vector at each of these points,
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Fig. 4. Diagram of the curve initialization process. (a) A curve used to initialize the solver with the boundary conditions c(0), c(1), t1 and t2. This
curve, S, is a spline creating by blending interpolating circles (see [29]). (b) We optimize over control points pa and pb to match a given arc length and
minimize the splines’ curvature. (c) These two splines, Sa and Sb, which have equal boundary conditions, are used to initialize the solver and relax into
physically-stable curves Ca and Cb.



which have unit length (Fig. 4a):

c′(0) = t1, c
′(1) = t2 ∈ R2

|t1| = |t2| = 1
(2)

Additionally, we have an arc length of c(t), L ∈ R, which
corresponds to the length of injected material, which we
define as:

L =

∫ 1

0

√
1 + c′(t)dt (3)

Based on empirical observations, we assume that there are
two or fewer achievable stable states for each set of boundary
conditions. These states can be loosely defined as (1) where
the rod’s material is mostly above the endpoints and (2)
below it (Fig. 4b). We built on this observation by using
spline integrals to reduce the infinite-degree problem space
to a finite number of physically plausible solutions.

B. Finding Initializations to the Simulator
Our goal is to develop an initialization that can match

the natural shapes of a flexible rod and provide a close
point from which we can simulate the relaxed state. The
Kirchhoff model for elastic rods uses a term that minimizes
geometric curvature to capture rod bending energy [15].
Therefore we want an initial geometry that is smooth and
twice differentiable such that curvature is a defined quantity.
Rather than use a single function to describe this possibly
complex initial curve, we opt to use a spline, which we can
easily edit through its control points.

Our work uses splines based on a C2 blending function,
adapted from Yuksel et al [29]. The Yuksel formulation
with circular interpolation offers several advantages for our
problem. It is interpolating, which allows us to encode tan-
gent constraints as two points along a vector of infinitesimal
length. This circular interpolation also creates splines that
are close to the final stable shapes they produce (Fig. 4c).
We posit that this is because the geometric properties of
Kirchhoff rods – the minimization of bending energy often
corresponds with the minimization of curvature inherent in
circular splines. We use five control points per spline, with
two points on each end representing the endpoints and the
tangent constraints respectively, and one point in the center,
which we use to control the end shape (Fig. 4a). We call
this central point p. We can adjust p to both match our arc
length constraint and find an initialization that is close to our
final relaxed shape (Fig. 4b).

To find these initializing splines we set up a light-weight
optimization problem over the coordinates of p. The objec-
tive function both minimizes planar curvature and uses a
least-squares approach to match the arc length of the spline
to the amount of injected rod. We want to minimize planar
curvature to find the spline that fits the bending energy in
our discrete elastic rods model.

We estimate curvature and arc length, which are integrated
quantities, with a discrete sum over n samples of the spline
S, s(t) ∈ R2. This estimation becomes more accurate as n
grows. We first discretize our spline into n points:

sn(t) = s(t/n) (4)

en(t) = sn(t+ 1)− sn (5)

where t ∈ [0, . . . , n − 1]. And en(t) refers to the edge
between spline samples sn(t) and sn(t + 1). We then
approximate arc length with the following sum:

l =

n−1∑
t=0

||sn(t+ 1)− sn(t)|| (6)

where l is the approximate arc length of the curve. We
approximate curvature, κ, by looking at the change in tangent
directions with each pair of edges. This is normalized by the
Voronoi length region around the point the edges share:

κ =

n−2∑
t=0

1− en(t)
||en(t)|| ·

en(t+1)
||en(t+1)||

1
2 ||en(t)||+

1
2 ||en(t+ 1)||

(7)

Finally we can set up our optimization problem,

p∗ = argminp(κ
2 + α(l − l0)

2) (8)

where we find the central spline control point p∗ that
achieves the desired arc length. We use a soft constraint
on arc length with constant α = 10 while minimizing
curvature squared, κ2. This objective function is solved using
automatic differentiation [38] along with Newton’s method
and a line search. To initialize this optimization we start
with the midpoint of the two boundary points and offset it
vertically by a small amount up and down (see Fig. 4b). This
optimization typically converges in fewer than 10 iterations.

V. SHAPE GENERATION ON A CURVED LINE DISPLAY

Actuation instructions to match simulated shapes were
generated based on the spline initialization corresponding
to that shape. Following the intuition described in Sec. IV-
A, we first actuate such that the majority of the material
is close to the final shape’s center of mass, then configure
end conditions. Each degree of freedom is controlled by a
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Fig. 5. Shape generation occurs by (a) extruding enough material to allow
biasing, (b) biasing toward the central control point (the pink circle), (c)
extruding until the interior rod is the desired arc length, (d) biasing to match
desired boundary conditions, and (e) translating to desired height difference.
Actuation steps pictured are annotated still frames pulled from a video of
the device being operated.



motor-encoder pair, making position control of each degree
of freedom closed loop. Overall shape control is open loop,
as the current system lacks sensors that would detect which
of the stable shapes the system is in. The following actuation
order was determined empirically to reliably generate the
same shape on a single-segment curved line display starting
with both nodes at the same height (y = 0) and with the
flexible rod at each node horizontal to the ground (θ = 0):

1) Extrude symmetrically until the length of flexible strip
between nodes has enough extra material to allow for
biasing on either end (Fig. 5a).

2) Bias the nodes on either side of segment to the bias
angles such that the lowest curvature arc between
tangent vectors t1 and t2 bends in the same direction
as the central control point p (Fig. 5b).

3) Extrude symmetrically until the length, L, of the
flexible strip matches that of objective shape (Fig. 5c).

4) Bias the nodes on either side of the segment to bias
angles θ1 and θ2 such that they match those of the
objective shape (Fig. 5d).

5) Translate the nodes until height, y, between nodes is
reached (Fig. 5e).

We used this sequence of actuation instructions to control
the curved line display for every shape generated in the
following section.

A. Comparison of Physical Display Segment to Model
In order to test the consistency of the display and compare

the model to the physical display, we generated a series of
shapes both in simulation and physically. Boundary condi-
tions were chosen to demonstrate the variety of achievable
shapes. We tested bias angles that were neutral, biased up, bi-
ased down, and asymmetrically biased with the nodes either

vertically level or vertically staggered. Based on simulation
initializations, different actuation instructions for each shape
were then generated as described in Sec. V.

Physical shape generation was recorded using an iPhone
13 camera. Still frames were then exported and corrected
for lens distortion using an AprilTag calibration [39]. Still
frames were then converted to binary for analysis.

The results of these experiments are shown in Fig. 6. Over
a total of 16 different shapes, the overall mean standard de-
viation within N = 3 trials over all 16 shapes of 0.75 mm or
0.47% of the display’s maximum vertical range. These results
show that our curved line display can consistently generate
the same shape given the same actuation instructions, and
can do so for a variety of different final shapes. For most
of the tested shapes, there is also good agreement between
the simulation and the physical display. Excluding the two
shapes marked with ** in Fig. 6, the mean RMSE between
the height physical display and our model was 6.68 mm or
3.85% of the display’s maximum vertical range.

We were unable to match the physical display for the two
shapes marked with ** in Fig. 6. Both of these shapes had
asymmetric boundary conditions and a stable “peak” shape
on the physical display, but when we simulated the display
using those boundary conditions, the final shape collapsed
into the other stable configuration. If the rightmost boundary
condition is allowed to be more horizontal, we can simulate
a shape with better agreement with the physical system
(Fig. 6, curves marked with * in the rightmost column). We
hypothesize that the discrepancy between the simulation and
the physical display may be a result of the irregular flexible
rack cross-section, or also the physical boundary hardware
being incompletely rigid.
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RMSE: 5.87 mm
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RMSE: 6.35 mm
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Fig. 6. Results comparing physical display to model. Each pane represents a set of boundary conditions, and each boundary condition has two associated
shapes (a “peak” and “valley”). Experimental curves represent the mean of N = 3 trials per shape on the physical display. Mean ± standard deviation is
shaded in, but due to relatively small standard deviation between trials is difficult to see. Mean standard deviation (MSD) between trials and root mean
squared error (RMSE) between trials and simulation are reported on each pane. Curves marked with * represent simulations done with a more relaxed
boundary condition.



B. Modeling Multiple-Segment Curved Line Display

Our simulator can be used to physically simulate a more
complex display with multiple segments that would expand
the shape space of our device. A multi-segment display offers
a range of possibilities for physically creating controllable
curves. We demonstrate a four-segment display in Fig. c, but
there is no mathematical limit to how many segments may
be added to the system by scaling the number of actuators.
Note that while we can achieve smooth curves with high
curvature, even a multiple-segment display cannot achieve
discontinuities like corners or gaps in the output shape.

VI. CONTACT FORCES ON CURVED LINE DISPLAY

To evaluate the viability of our display for haptic surface
exploration, we loaded two shapes at two different points
along our curved line display and determined the deflection
of that point in response to the applied force (Fig. 7). We
added additional load to the force in 0.5 N increments until
the curve snapped through to a different curve. Previous
work in haptic texture exploration observed that most users
employed less than 1 N of force when searching for a tactile
target [40]. Another study in exploratory procedures found
that users employ 2-5 N of force in contour following [41].
Our display can support these previously observed forces,
but not the larger forces employed in other exploratory
procedures such as pressure or enclosure.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we motivate the use of a curved line display
in conjunction with a discrete elastic rods model as a method
for creating a smooth line shape-changing display. We built
a physical curved line display and then developed a model
using the discrete elastic rods formulation. By employing
a circular spline initialization, we can model the inherent
multi-stability of a flexible rod under a single set of boundary
conditions. This then allows us to generate actuation instruc-
tions for our curved line display that utilize multi-stability as
a way of expanding the number of achievable shapes. Our
display is consistent in output shape and matches well with
our model. We demonstrate scalability by simulating a multi-
segment version. Finally, we characterized the behavior of
our display under loading, and we demonstrated that it can
support contour following during haptic exploration.

There are a few notable drawbacks to our current system.
While it has a large variety of shape outputs, it is lacking
in tactile stiffness. Many shape-changing displays are made
with haptic interaction in mind, but certain shapes on this
display only support a few Newtons of load before buckling.
Future work should consider improving mechanical robust-
ness of the system. Furthermore, the current system controls
final shape in an open-loop manner, which means that the
system has no sensing for shape snap-through and recovery.
Future iterations should consider instrumentation for closed-
loop control. Another limitation of our system is that it can
solve the forward problem of determining shape output from
boundary conditions, but it does not solve the inverse prob-
lem of determining appropriate boundary conditions from
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Fig. 7. A point load is applied at the spot indicated by the orange arrow
labeled F at (a) the center of the shape and (b) off of the center of the shape.
The left column of each sub-figure shows one example trial for each of the
two shapes, with the unloaded rod shown as a solid line and the loaded
rod as dashed. The right column shows the relationship between the force
applied and the deflection of the point at which the force is applied. Each
loading experiment was repeated N = 3 times.

a desired shape. Future work should implement the inverse
solution to enable a curved line display to approximate
any arbitrary curved shape. Finally, the current system only
displays a single, flexible rod. We propose future work that
configures multiple curved line displays in a grid, making it
possible to display 2.5D surfaces.
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